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0. Introduction.

The conventional approach to the teaching of the first year calculus is currently based on a
conception in which it is made to depend, from the outset, whether explicitly or implicitly, on the
notion of limit. That this approach is by no means the only possible one, let alone the most
desirable one, has been completely forgotten to the point that limits are now considered to be
absolutely indispensible to the comprehension of the calculus.

For the past several years, we have been developing an approach to the differential calculus
based on Lagrange's idea that a function can be studied locally through its Taylor approximations
obtained directly from its definition1 . We illustrate some of the main points of this approach in the
case of polynomial functions but it should be clear that the same ideas apply to "all" other
functions. We will briefly indicate how to obtain approximations in "all" cases.

Some of the pedagogical advantages of Lagrange's viewpoint, the single most important of
which is that it empowers the students by not reducing the calculus to a cookbook, are described in
F. Schremmer and A. Schremmer (1989 a). See F. Schremmer and A. Schremmer (in press) for
some aspects pertaining to "calculus literacy". F. Mattei & A. Schremmer (1988 a, b, c) are
taskbook implementations of Lagrange's approach2 .

1. Best Polynomial Approximations.

Consider a function f which, for the sake of simplicity, we assume to be polynomial, and
suppose that we are interested in the numerical values of f when x is near x0. We begin by local-
izing f at x0, that is by expressing f(x) in terms of x – x0. Suppose that we obtain something like

f(x) = 102.7 + 0.473(x – x0) + 2.17(x – x0)2 + 3.14159(x – x0)3 + ...

or, setting x = x0 + h,

f(x0 + h) = 102.7 + 0.473h + 2.17h2 + 3.14159h3 + ...

                                                
1  In the January-February  1988 issue of FOCUS, mention is made of a 1987 MAA Award for Expository Ex-

cellence, the George Polya Award for articles in THE COLLEGE MATHEMATICS JOURNAL, to Irl. C. Bivens for
"What a Tangent Line is When it isn't a Limit" in the March 1986 issue, pages 133-143. The committee's citation
is quoted in part as: "By defining the tangent line as the best linear approximation to the graph of a function near a
point, [Bivens] has narrowed the gap, always treacherous to students, between an intuitive idea and a rigorous defi-
nition.  The subject of this article is fundamental to the first two years of college mathematics and should simplify
things for students...." (Emphasis added). Lagrange's approach is of course just the extension of this idea to best
approximations of any degree. In other words, what we are really dealing with are jets of differentiable functions.

2  The interested reader is invited to write us for copies of any of these.
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If we only want to have an idea of the value of f(x0 + h), we can approximate f(x0 + h) with
constant functions, the simplest non-zero functions:

0x 0x 

 (h) = 102.7k x 0 

 102.7

 The best constant approximation A good constant approximation

 102.7

k  (h) = 100x 0 

 100

To see how f(x0 + h) varies, we use affine functions, the simplest non-constant functions:

0x 0x 0x 
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We can also approximate f(x0 + h) with quadratic functions, the simplest non-affine
functions. Thus, we might use qx0(h) = 100 + 0.5h + 2h2 but the best quadratic approximation is
qx0(h) = 102.7 + 0.473h + 2.17h2 as the error is now "in the thousandths".

More generally, suppose that we have

f(x0 + h) = fx 0 (h) = A0 +A1h+A2h2 + ... + Anxn  + ...

To obtain a local graph of a polynomial approximation fx 0 (h) of f(x0 + h) near x0, we first
draw the constant function kx 0 (h) = A0, then the linear function lx 0 (h) = A1h using the graph of k
as "base line", and then the parabolic function px 0 (h) = A2h2 using the graph of the affine function
ax 0 (h) = A0 +A1h as base line, etc:
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The constant function
k x 0(h) = A0
gives the part of f(x)
due to the value at x0.
The linear function
l x 0(h) = A1h

gives the part of f(x)
due to the value change
as x changes away from x0.
The parabolic function
p x 0(h) = A2h2

gives the part of f(x)

due to the value change change
as x changes away from x0,



Altogether, we get
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which gives a graphic representation of the polynomial approximation fx 0 (h).

2. Qualitative Analysis.

Much of what we do in calculus consists in using information at a point to obtain information
near that point. We first give elementary definitions of the usual features of a function and then
necessary and sufficient conditions in terms of Taylor polynomial approximations. It is useful to
keep in mind that, among all power functions, constant and linear functions are pathological. Here,
and again for the sake of simplicity, we assume x0 to be neither a pole nor at È

The zero function has no sign. So, we define the sign of f near x0 as the way f(x) differs from
the zero function on each side of x0. For example, sign f near x0 is (+,–) if f(x) > 0 when x < x0 and
f(x) < 0 when x > x0. To find how f(x) differs from the zero function, we just need the first non-zero
term in the Taylor approximation. Indeed, because the terms are in order of descending importance,
and are so by orders of magnitude, none of the further terms in the Taylor polynomial can affect the
sign as given by the first term. Thus, the sign of f near x0 is determined by the way the Least Non-
Zero Approximation of f(x) differs from the zero function and since the LNZA is "usually" the
constant part A1 = f(x0), we get the

SIGN THEOREM.  When f(x) is neither 0 nor È at x0, f(x) is "even signed"1 . Moreover,
if f(x) is positive at x0, then the sign of f(x) near x0 is (+,+) and so f(x) is positive near x0
if f(x) is negative at x0, then the sign of f(x) near x0 is (–,–) and so f(x) is negative near x0

When f(x) is either 0 or È, f(x) near x0 can be even or odd signed and the "unusual" points for the
sign are thus the poles and the zeros of f(x)—whether finite or infinite.

Similarly, we define the variance of f near x0 as the way f(x) differs from its best constant
approximation kx 0 (x) on each side of x0. Then we need only approximate f(x0 + h) to the first non-
constant term to find the variance of f near x0. Thus fx 0 (h) = A0 +Anhn + ...  shows that x0 is a
monotonic point with variance (Ω,Ω) or (œ,œ) or a turning point with variance (œ,Ω) or (Ω,œ)
depending on the parity of n and on the sign of An. The Least Non-Constant Approximation of f(x)
is "usually" the affine part A0 +A1h and since, anticipating on the definition of the derivative,  we
have A1 = f'(x0), we get:

VARIANCE THEOREM.  When f'(x) is neither 0 nor È at x0, f(x) is monotonic. Moreover,:
if f'(x) is positive at x0, then the variance of f(x) near x0 is (Ω,Ω) and so f(x) is increasing near x0

                                                
1  We use the term for the sake of terminological symmetry.
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if f'(x) is negative at x0, then the variance of f(x) near x0 is (œ,œ) andso  f(x) is decreasing near
x0

When f'(x) is either 0 or È, f(x) near x0 can be either monotonic or turning and the "unusual" points
for the variance are thus the poles and the zeros of f'(x), that is the critical points of f(x).

From a different viewpoint, we define the optimization of f near x0 as the way  f(x0) compares
with  f(x) on each side of x0. Thus fx 0 (h) = A0 +Anhn + ...  shows that x0 is a "saddle point"1  with
optimization (min,max) or (max,min) or an extreme point with optimization (min,min) or (max,max)
depending on the parity of n and on the sign of An. We  get:

OPTIMIZATION THEOREM.  When f'(x) is neither 0 nor È at x0, f(x) has a saddle point. More-
over,

If f'(x) is positive at x0, then the optimization of  f(x) near x0 is (max,min)
If f'(x) is negative at x0, then the optimization of  f(x) near x0 is (min,max)

When f'(x) is either 0 or È, f(x) can have either a saddle point or an extreme point and the "unusual"
points for optimization are thus the critical points of f(x).

Finally, we define the concavity of f near x0 as the way f(x) differs from its best affine ap-
proximation ax 0 (x) on each side of x0. Then we need only approximate f(x0 + h) to the first non-
linear term to determine the concavity of f near x0. Thus, fx 0 (h) = A0 +A1h+ ... +  Anhn  + ...
shows that x0 is a "curling" point with concavity ($%,$%) or (^&,̂ &) or an inflection point with
concavity ($%,̂ &) or (^&,$%) depending on the parity of n and on the sign of An. Since the Least
Non-Affine Approximation is "usually" the quadratic part A0 +A1h+  A2h2 and since A2 = f"(x0)/2,
we have:  

CONCAVITY THEOREM.  When f"(x) is neither 0 nor È at x0, f(x) has a "curling point".  More-
over,

if f"(x) is positive at x0, then the concavity of f(x) is ($%,$%) and so f(x) is concave UP near x0
if f"(x) is negative at x0, then the concavity of f(x) is (^&,̂ &) and so f(x) is concave DOWN

near x0

When f"(x) is either 0 or È, f(x) can have either a curling point or an inflection point and the
"unusual" points are thus the poles and the zeros of f"(x), that is the critical points of f'(x).

Example 1. Let f(x) = x3 –6x2 +9x. If we want to look at f(x) when x is near x0 = 0, we just
write f(x) = 9x –6x2 +x3 = 9x + ... which shows that x0 = 0 is a zero of f and that sign f near
x0 is (–,+). If we want to look at f(x) when x is near x0 = 3, we set x = 3 + h and expand
which gives f(3 + h) = (3 + h)3 –6(3 + h)2 +9(3 + h) = 3h2 + ... which shows that 3 is a
zero of order 2 , with sign (+,+) , and therefore a minimum.

3. Quantitative Analysis.

Thus far, by looking at the principal part of a function, we were able to obtain qualitative
information. Here, we don't just ask if f is increasing or concave up near a point x0 but how much
so. We must therefore take into consideration the part that is small compared to the principal part
and which we represent by the ellipsis ' ... '. Just recognizing the existence of this small part allows

                                                
1  Here again, we wanted a term for the sake of terminological symmetry but we are not really satisfied with it

as it usually  implies that x0 is critical; we use critical saddle in that case.
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us, in contrast with the conventional approach, to fully define all the usual notions. For instance, in
the conventional approach, we define

limxåx0 f(x) = L iff ∀ε ∃δ ¶ 0 < |x – x0| < δ  ⇒  |f(x) – L| < εª

but once we decide, as in the usual "intuitive" presentation, to avoid ε's and δ's, we are left with

limxåx0 f(x) = L iff

that is without even the appearance of a definition and with nothing to foster and support an intu-
ition of the meaning of limxåx0 f(x). On the other hand, if we separate in f(x) the part which is finite
from the part which is vanishingly small, then, when x approaches x0, the first part gives the limit
because the second part approaches 0. Specifically, we localize f(x) and decompose f(x0 + h) as L,
the constant part plus a remainder R0 (h), that is f(x0 + h) = L + R0 (h), and then, when x approaches
x0, we get

limxåx0 f(x) = limhå0 f(x0 + h)
= limhå0 [L + R0 (h) ]
= limhå0 L + limhå0 R0 (h)
= L + limhå0 R0 (h)

and to say that limxåx0 f(x) = L is to say that limhå0 R0 (h) = 0. We thus have

limxåx0 f(x) = L iff f(x0 + h) = L + ...

which we interpret as saying that, when x is near x0, f(x0 + h) is equal to L plus "something small"
and this is an operational definition1 . Moreover, note that, in order to prevent students from
identifying the limit of a function at a point with the value of the function at that point, it suffices to
require sided limits and that these are easily obtained by looking at the least non-constant
approximation. In the same manner as above, we have

f is continuous at x0 iff limxåx0 f(x) = f(x0)

which, again, once we decide to avoid ε's and δ's, leaves us with

f is continuous at x0 iff

and the notion of continuity becomes essentially a primitive one whose understanding depends
solely on the students' intuition of the expression limxåx0 f(x), if any, and on whatever connotations
the word 'continuous' may have. On the other hand, localizing and decomposing f(x0 + h),

 limxåx0 f(x) = limhå0 f(x0 + h)

                                                
1  We should keep in mind, though, that we are not dealing with a series that is with the limit of an infinite

sum as this would involve taking the limit of Rn(h) as n approaches È. For a treatment of calculus based on power
series, see H. Levi, (1968).
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= limhå0 [f(x0) + R0 (h) ]
= limhå0 f(x0) + limhå0 R0 (h)
= f(x0) + limhå0 R0 (h)

so that, to say that limxåx0 f(x) = f(x0) is to say that limhå0 R0 (h) = 0, and we have

f is continuous at x0 iff f(x0 + h) = f(x0) + ...

which we can interpret as: f(x0+h) is approximately equal to f(x0 ): A CONTINUOUS FUNCTION IS A
FUNCTION THAT IS LOCALLY APPROXIMATELY CONSTANT which again is an operational
definition. We then have, similarly,

f is differentiable at x0 iff f(x0 + h) = f(x0) + lh + ...  for some l

which we can interpret as: f(x0+h) is approximately equal to f(x0 ) plus a linear term: A DIFFER-
ENTIABLE FUNCTION IS A FUNCTION THAT IS LOCALLY APPROXIMATELY AFFINE1 .

Example 2. Let f(x) = x3 –6x2 +9x. To obtain the equation of the tangent to the graph of f
near 2, localize, that is set x = 2+h to obtain f(2+h) = f2(h) = (2 + h)3 – 6(2 + h)2 + 9(2 +
h) = [8 + 12h + ... ] – 6[4 + 4h + ... ] = -7 + 3h ... so that the best affine approximation of
f2(h) is a2(h) = +2 – 3h. We get the global equation of the tangent by "delocalizing" a2(h):
t2(x) = a2(x–2) = +2 – 3(x – 2) = –3x +8.

We call the coefficient of the linear term linear rate of change and we then define the
derivative of a function f as the function f' whose value at x0 is the linear rate of change of f at x0.
Thus, whenever we are able to decompose a function f at a point x0 as f(x0 + h) = fx0(h) = A0 + A1h
+ ... , we obtain the value of the derivative of f at x0 as the coefficient A1. This makes it quite simple
to obtain the derivative of a function "from first definition".

THEOREM. (xn )' = nÙxn–1

Proof. Localize f(x) = xn at x0. By the binomial expansion theorem,

fx0(h) = (x0 + h)n = x0n + nÙx0n–1Ùh +[nÙ(n–1)/2]Ùxn–2 ... ,

so that the linear rate of change is nÙx0n–1 which gives f'(x) = nÙxn–1.

At first glance, though, it seems that there is something unsatisfactory about using the linear
rate of change A1 and that what we really want to use is the instant rate of change limxåx0 ∆x/∆y.  In
the case of an affine function there is no difficulty since the average rate of change between any two
points x1 and x2 is independent of x1 and x2 and equal to A1. So, whatever the definition of limxåx0,

                                                
1  Observe that this is in fact the way differentiability is defined in higher dimensions. See, for instance,

Williamson, Crowell and Trotter (1968).
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the instant rate of change is equal to the linear rate. We then define the instant rate of change of a
function as that of its best affine approximation! Incidentally, the direct proof that the instant rate of
change as usually defined is the same as the linear rate of change is trivial:

limx˘x0 ∆y/∆x = limh˘0 {[fx0(h) – fx0(0)] / h }

= limh˘0 {[A0 + A1h + A2h2 + A3h3 ... – A0] / h }

= limh˘0 {[A1h + A2h2 + A3h3 ... ] / h }

= limh˘0 {A1 + A2h + A3h2 ... }

= A1

The usual rules are also proven quite easily. For instance, the chain rule goes as follows. As-
sume that f is differentiable at x0:

f(x0 + h) = f(x0) + f'(x0)h + ...

and that g is differentiable at f(x0):

g(f(x0) + k) = g(f(x0)) + g'(f(x0))k + ...

Then, to show that gof is differentiable at x0, we must evaluate [gof](x0 + h).

[gof](x0 + h) = g(f(x0 + h)) 

= g(f(x0) + f'(x0)h + ... )

= g(f(x0) +k )

where k = f'(x0)h + ... so that

[gof](x0 + h) = g(f(x0)) + g'(f(x0)) k + ...

= g(f(x0)) + g'(f(x0)) [f'(x0)h + ...] + ...

= g(f(x0)) + g'(f(x0))f'(x0)h + ...

which shows that [gof]'(x0) = g'(f(x0))f'(x0).
Higher derivatives can be defined inductively as usual but also directly. For example, the second

derivative of f(x) = xn is the derivative of f'(x) = nÙxn–1. Localize at x0. By the binomial expansion
theorem,

f'(x0 + h)  = nÙ(x0 + h)n–1 = nÙ[x0n–1 + (n–1)Ùx0n–2Ùh + ... ] = nÙx0n–1 + nÙ(n–1)Ùx0n–2Ùh + ...
]

so that the linear rate of change of f' is nÙ(n–1)Ùx0n–2 which gives f"(x) = nÙ(n–1)Ùxn–2.
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Observe, though, that this is twice the quadratic coefficient in f(x0 + h) so that we can define the
second derivative, as well as all the others, directly from the polynomial approximation. That is, we
can write

f(x0 +h) = f(x0) + f'(x0)h + f"(x0)h2/2 + f( 3 )(x0)h2/2 + ... + f(n )(x0)hn/n! + ...

4. Remainder Theorems.

Various theorems take a simple, natural meaning which is to provide information about the
remainder. When, for instance, f is differentiable, the Mean Value Theorem gives us information on
how fast the remainder approaches 0 by saying that the remainder R0 (h) in f(x0 + h) = f(x0) +
R0 (h) is of the form hÙf'(c) with c between x0 and x and this is indeed the form in which the Mean
Value Theorem is actually used:

f(x0 + h) = f(x0) + hÙf'(c) with c between x0 and x.

Actually, the Mean Value Theorem is a special case of Taylor's formula with remainder which,
significantly, is actually due to Lagrange and which is also often called the Extended Mean Value
Theorem: when f is Cn + 1, the remainder Rn(h) in

f(x0 + h) = f(x0) + hÙf'(x0) + ... + hnÙf( n )(x0)/n! + hn+1ÙRn(h)

is of the form Rn(h) = f(n + 1 )(c)/(n+1)! with c between x0 and x:

5. Applications.

The main applications of the differential calculus are optimization and graphing. Extremes are
found by analyzing critical points but here we can do it in several ways: as with any point, we can
expand the function f itself or we can expand the derivative of f near x0 and then recover from its
sign near x0 the information about the variance of f near x0. We can also look at the second
derivative whose sign at x0 gives the concavity near x0 and, even if f" is 0 at x0, we can expand it to
get its sign near x0 and therefore the concavity of f near x0. We give an example of graphing.

Example 3. Consider the function f(x) = (x–2) / (x2–1). To graph f, we approximate f near
its essential points, È and the poles –1 and +1.
fÈ(x) = 1/x + ... ,
f(–1 + h) = f–1(h) = 3/2h +... , so that, from a global viewpoint, near –1, f(x) ≈ 3/2(x+1)
f(+1 + h) = f+1(h) = –1/2h +... , so that, from a global viewpoint, near +1, f(x) ≈ –1/2(x-1)

We then sketch the local graphs and interpolate smoothly:
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0

f
+ 1f– 1ff

È

–1 +1 –1 +1

fÈ(x) ≈ 1/x f–1(h) ≈ 3/2h f+1(h) = –1/2h Essential graph

Thus f must have a minimum somewhere between –1 and +1, a zero somewhere right of +1,
a maximum somewhere right of the zero and an inflection somewhere right of the max-
imum.

6. Fundamental Theorem.
We consider the following initial value problem in terms of finite differences: given a function

f(x), find the value at x1 of a function F(x) such that F'(x) = f(x) given F(x0). If we assume the
existence of an antiderivative F(x), we have immediately from our definition of differentiability1 :

F(x0 + h) – F(x0) = F'(x0)h + ho1 [1]
= f(x0)h + ho1 [1]

Then, taking h = 
x1 – x0

n   , we continue step by step until we reach x1 = x0 + nh:

F(x0 + 2h) – F(x0 + h) =  hf(x0 + h) + ho2 [1]
F(x0 + 3h) – F(x0 + 2h)=  hf(x0 + 2h) + ho3 [1]

..............................................................................................................................

F(x0 + nh) – F(x0 + (n – 1)h)) =  hf(x0 + (n – 1)h) + hon[1]
Adding and cancelling on the left, we get:

 F(x)
x 1
x 0  = F(x1 ) – F(x0) =  h ∑

i=0

i=n–1
 f(x0 + ih)  + h∑

i=1

i=n
oi [1] 

This is always true but the term h∑
i=1

i=n
oi [1]  is extremely complicated to evaluate. So, we have a good

reason to let n approach È. Clearly, for f(x) smooth enough, h∑
i=1

i=n
oi [1]  approaches 0 as n

approaches È and thus we obtain

 F(x)|
x 1
x 0  =  lim n.È ∑

i=0

i=n–1
 f(x0 + ih)  =lim n.È ∑

i=0

i=n–1
 f(xi)  ,

                                                
1  In comparing small quantities, it is convenient to introduce Landau's "little oh" notation. Given two

functions f and g with g(0) ≠ 0, if limhå0 f(h)/g(h) = 0, that is if, as h approaches 0, f(h) approaches 0 faster than
g(h), we shall say that f(h) = o[g(h)] near 0.
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where ∑
i=0

i=n–1
 f(xi)  is called a Riemann sum, and which we can then easily interpret geometrically as

the approximation of ⌡⌠
x 0

 x1

f(x) dx , the area under the graph of f. We thus have the Fundamental

Theorem:

F(x)|
x1
x0  =  ⌡⌠

x 1

 x0

f(x) dx 

7. Approximation of Non-Polynomial Functions.

To conclude, we should observe that nothing in the preceding depended on f being a polynomial
function other than we approximated by truncation. The only question that remains is to indicate
how to get the polynomial approximation of "all" functions". In the case of polynomial functions,
we obtained these by truncating binomial expansions. In the case of rational functions, we obtain
them by division of polynomials in both ascending order near 0 and descending powers near È. For
"all" other functions, we obtain the approximation by the method of undetermined coefficients from
the functional equation, algebraic or differential, of which they are the solution1 .  See F. Schremmer
and A. Schremmer (1989 b) for a more detailed exposition.

It is interesting to observe that the polynomial approximations already have many of the prop-
erties of the exact solution.

Example 4. To get eaeb = ea+b, multiply 1 + a + a2/2! + a3/3! + ... by 1 + b + b2/2! +
b3/3! + ... ; this gives

 eaÙeb  = 1 + a + a2/2!+ a3/3! + ...
+b + ab + a2b/2! + ...

+b2/2! + ab2/2! + ...
+b3/3! + ...

And since ' ... ' stands for finite remainders and not for infinite tails, we can commute
additions to get:

eaÙeb = 1 + a + b + a2/2! + ab +b2/2!+ a3/3! + a3 + a2b/2! + ab2/2! +b3/3! + ...
= 1 + (a + b)+ (a2 + 2ab +b2)/2!+ (a3 + 3a2b + 3ab2 +b3)/3!+ ...
= 1 + (a + b)+ (a + b)2/2!+ (a + b)3/3! + ... = ea+b

Finally, note that we have no need for L'Hôpital's rule.

Example 5.  Consider the following complete list of examples of applications of
L'Hôpital's rule taken from a popular textbook.

1. limxå0 sinx /x 2. limxåπ/2 [1–sinx]/cosx 3. limxå0 [ex – 1]/x3

                                                
1  Even the rigorous treatment is much simpler that way than the conventional one. See for instance  Sections

4-1, 2, and 3 in S. Lang (1976) or  Section 4-8 and exercise 3 in R. L. Finney and D. R. Ostbey (1984) .
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4. limxå0 [1 – cosx]/x2 5. limxå0 ex /x2 6. limxå+È x-4/3/sin(1/x)
7. limxå0 tanx/x2

Now, with the exception of 2. and 6., the limits are obvious as soon as we replace the
functions by their polynomial approximations as found by the method of indeterminate
coefficients. But, of course, this is exactly what L'Hôpital's rule does. For 2. and 6. it would
seem that we have a problem since the polynomial approximations for trigonometric
functions are only good near 0. However, for 2. we naturally localize, that is we set x = π/2
+u and for 6. we naturally invert, that is we set v = 1/x after which we can use the polyno-
mial approximations.
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